

BASIC GUDIE: HOW TO SELECT PUMP AND SOLAR PANELS

STEP 1: Determine required flow rate.

STEP 2: Calculate total head based on the following:

- Pumping water level to ground level
- Friction loss in discharge pipe (hydraulic gradient)
- Height from ground to discharge point (i.e bore to top of tank operating pressure if required)

Example: Tank Fill

Recommended Pump Setting: 40 metres
Required Flow: 3000l/hr(3m3) or 50L/min

Standing Water Level: 27 metres
Pumping Water Level: 33 metres

Height from ground to discharge point: 2 metres
Discharge pipe: 35 metres of 40mm pn12.5 pipe

(Pipe ID 34mm) giving a friction loss of approx. 1m

(see flow nomogram)

STEP 3: Add together the following:

= Total

Pumping water level	33 metres
Height from ground to discharge point	2 metres
Friction loss in discharge pipe	1 metre

Therefore the Pump Duty is: 3000L/hr @ 36 metres

STEP 4: Select the correct pump and determine how many solar panels are required

Looking at the pump curves there are two solar pumps to suit this duty the Grundfos SQF 3A-10N and SQF 5A-7N. Both of which require a minimum of 700 watts. If you add some redundancy you arrive at 800 watts or 4 panels.

36 metres